Customer Care Solutions RH-18/36/38 Series Transceivers

Engine module

Issue 1 10/03 ©Nokia Corporation

CCS Technical Documentation

[This page left intentionally blank]

Table of Contents

CCS Technical Documentation

EL	Page No
Electronics of Nokia 1100	
Environmental Specifications	
Baseband HW Introduction	
Technical Summary	
Modes of Operation	
No supply	
Power_off	10
Acting Dead	
Active	11
Sleep mode	
Charging	
DC Characteristics	13
Supply Voltage Ranges	
Regulators' Voltage Ranges	14
Interconnection Diagram	15
External Signals and Connections	15
System connector (X102)	
Battery connector	
Baseband – RF interface	
Internal Signals and Connections	17
Audio	
Baseband board clocks	18
Functional Description	
Audio External	
Audio Internal	
Earpiece	19
Microphone	
Buzzer	
Flashlight	
Batteries	
Keyboard	
Display & Keyboard Backlight	
Keyboard light	
Display	
Memory Module	
SIM Interface	
Vibra	
Test Interfaces	
Connections to Baseband	
FBUS Interface	
MBUS Interface	
General description of the RF circuits	
Receiver signal path	
Transmitter signal path	
PLL	
Power Supply	
1 0 WOL Dupply	

[This page left intentionally blank]

Engine module

Abbreviations

Abbr.	Description
ACI	Accessory Control Interface
ADC	Analog Digital Connector
ARM	Advanced RISC Machines
ASIC	Application Specific Integrated Circuit
ATR	Answer To Reset
ВВ	Baseband
BL-5C	Battery type.
BSI	Battery Size Indicator
Cbus	Control bus (internal phone interface between UPP-UEM)
ccs	Customer Care Service
СРН	Copenhagen, Denmark
СТІ	Cover Type Indicator
CTSI	Clock Timing Sleep and Interrupt
Dbus	DSP controlled bus (Internal phone interface between UPP-UEM)
DC	Direct Current
DCT4.0	Digital Core Technology, generation 4.0
DSP	Digital Signal Processor
DUT	Device under test
EAD	External Accessory Detection
EMC	Electro Magnetic Compatibility
ESD	Electro Static Discharge
Fbus	Fast Bus, asynchronous message bus connected to DSP (communications bus)
FCI	Functional cover interface
FPC	Flexible printed circuit
FR	Full Rate
GENIO	General Purpose Input/Output
GSM	Global System Mobile
HW	Hardware
IF	Interface

CCS Technical Documentation

IHF	Integrated Hands Free
IMEI	International Mobile Equipment Identity
Jannette	DCT3.x accessory program
LCD	Liquid Crystal Display
LDO	Low Drop Out
LED	Light Emitting Diode
Li-Ion	Lithium Ion battery
Lion	Battery program
LN	Lotus Notes
LPRF	Low Power Radio Frequency
Lynx	Battery type, Lion program, Salo – Finland
MALT	Medium And Loud Transducer
Maxwell	GSM phone program
Mbus	Asynchronous message bus connected to MCU (phone control interface). Slow message bus for control data.
MCU	Micro Controller Unit
NO_SUPPLY	UEM state where UEM has no supply what so ever
NRT	Nokia Ringing Tones
NTC	Negative temperature Coefficient, temperature sensitive resistor used as a temperature sensor.
PA	Power Amplifier (RF)
PDA	Personal Digital Assistant
PDM	Pulse Density Modulation
PDRAM	Program/Data RAM
Phoenix	SW tool of DCT4.x
Pippi	Hdb12, Phone program (3510)
PLL	Phase locked loop
PnPHF	Plug and Play Handsfree
PUP	General Purpose IO (PIO), USARTS and Pulse Width Modulators
PWB	Printed Wired Board
PWR_OFF	UEM state where phone is off
PWRONX	Signal from power on key.
R&D	Research and development

Engine module

CCS Technical Documentation

RESET	UEM state where regulators are enabled
RTC	UEM internal Real Time Clock
SARAM	Single Access RAM
SIM	Subscriber Identification Module
SLEEP	UEM power saving state controlled by UPP
SPR	Standard Product Requirements
SRAM	Static RAM
STI	Serial Trace Interface
SW	Software
TBSF	Through the Board Side Firing
TDB	To Be Defined
TI	Texas Instruments
UEM	Universal Energy Management
UI	User Interface
UPP	Universal Phone Processor
VBAT	Main battery voltage
VCHAR	Charger input voltage
VCHARDET	Charger detection threshold level
VMSTR+, VMSTR	Master Reset threshold level

Electronics of Nokia 1100

Environmental Specifications

Table 1: Environmental specifications

Parameter	Ambient temperature	Remarks
Normal operation	-25 ° C +55 °C	Specifications fulfilled
Reduced performance	-40 °C25 °C and +55 °C +85 °C	
No operation and/or storage	< -40 °C or > +85 °C	No storage or operation. An attempt to operate may damage the phone permanently
Humidity	Relative humidity 595%.	The module is not protected against water. Condensed or splashed water might cause malfunction. Any submerge of the phone will cause permanent damage. Long-term high humidity, with condensation, will cause permanent damage because of corrosion.

Baseband HW Introduction

This document specifies the baseband module for the Nokia 1100. The baseband module includes the baseband engine chipset, the UI components and the acoustical parts for the transceiver.

Nokia 1100 is a hand-portable dualband 900/1800MHz or 850/1900MHz phone, featuring the DCT4 generation baseband (UEM/UPP) and RF (MJOELNER) circuitry.

Technical Summary

The baseband module contains 2 main ASICs named the UEM and UPP. The baseband module furthermore contains a Flash IC of 16Mbit. The baseband is based on the DCT4

engine program.

NOKIA

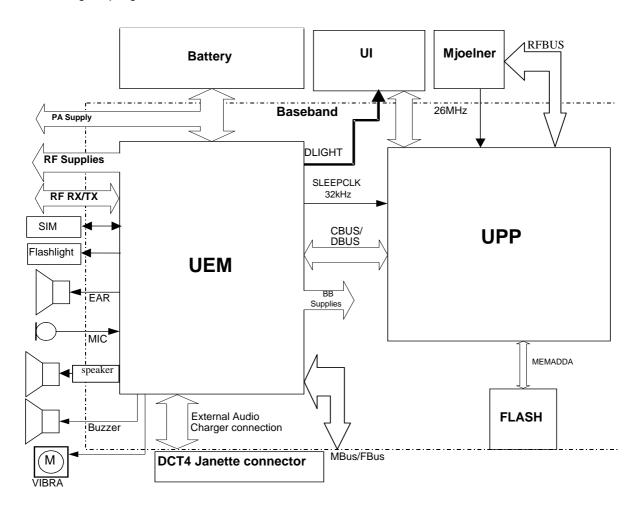


Figure 1: Baseband block diagram

The UEM supplies both the baseband module as well as the RF module with a series of voltage regulators. Both the RF and Baseband modules are supplied with regulated voltages of 2.78 V and 1.8V. UEM includes 6 linear LDO (low drop-out) regulators for baseband and 7 regulators for RF. The UEM is furthermore supplying the baseband SIM interface with a programmable voltage of either 1.8 V or 3.0 V. The core of the UPP is supplied with a programmable voltage of 1.0 V, 1.3 V, 1.5 V or 1.8 V.

UPP operates from a 26MHz clock, coming from the RF ASIC MJOELNER, the 26 MHz clock is internally divided by two, to the nominal system clock of 13MHz. DSP and MCU contain phase locked loop (PLL) clock multipliers, which can multiply the system.

The UEM contains a real-time clock, sliced down from the 32768 Hz crystal oscillator. The 32768 Hz clock is fed to the UPP as a sleep clock.

The communication between the UEM and the UPP is done via the bi-directional serial busses CBUS and DBUS. The CBUS is controlled by the MCU and operates at a speed of 1 MHz set by SW. The DBUS is controlled by the DSP and operates at a speed of 13 MHz. Both processors are located in the UPP.

Engine module

The UEM ASIC mainly handles the interface between the baseband and the RF section. UEM provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the user interface. The UEM supplies the analog signals to RF section according to the UPP DSP digital control.

RF ASIC MJOELNER is controlled through UPP RFBUS serial interface. There are also separate signals for PDM coded audio. Digital speech processing is handled by the DSP inside UPP ASIC. UEM is a dual voltage circuit, the digital parts are running from the baseband supply 1.8V and the analog parts are running from the analog supply 2.78V, also VBAT is directly used by some blocks.

The baseband supports both internal and external microphone inputs and speaker outputs. Input and output signal source selection and gain control is done by the UEM according to control messages from the UPP.

The transceiver module is implemented on 6 layer selective OSP/Gold coated PWB.

Modes of Operation

baseband has six different operating modes (in normal mode):

- No_Supply
- Power_off
- Acting_Dead
- Active
- Sleep
- Charging

Additionally two modes exist for product verification: 'testmode' and 'local mode'.

No supply

In No_Supply mode, the phone has no supply voltage. This mode is due to disconnection of main battery or low battery voltage level.

Phone is exiting from No_Supply mode when sufficient battery voltage level is detected. Battery voltage can rise either by connecting a new battery with VBAT $> V_{mstr+}$ or by connecting charger and charging the battery above V_{mstr+} .

Power_off

In this state the phone is powered off, but supplied. VRTC regulator is active (enabled) having supply voltage from main battery. Note, the RTC status in PWR_OFF mode depends on whether RTC was enabled or not when entering PWR_OFF. From Power_off

mode UEM enters RESET mode (after 20ms delay), if any of following statements is true (logical OR –function):

- Power_on button detected (PWROFFX)
- charger connection detected (VCHARDET)
- RTC_ALARM detected

The Phone enters POWER_OFF mode from all the other modes except NO_SUPPLY if internal watchdog elapses.

Acting Dead

If the phone is off when the charger is connected, the phone is powered on but enters a state called "Acting Dead", in this mode no RF parts are powered. To the user, the phone acts as if it was switched off. A battery-charging alert is given and/or a battery charging indication on the display is shown to acknowledge the user that the battery is being charged.

Active

In the active mode the phone is in normal operation, scanning for channels, listening to a base station, transmitting and processing information. There are several sub-states in the active mode depending on if the phone is in burst reception, burst transmission, if DSP is working etc.

In active mode the RF regulators are controlled by SW writing into UEM's registers wanted settings: VR1A/B must be kept disabled. VR2 can be enabled or forced into low quiescent current mode. VR3 is always enabled in active mode. VR4 -VR7 can be enabled, disabled or forced into low quiescent current mode.

Table 2: Regulator controls

Regulator	NOTE
VFLASH1	Enabled; Low Iq mode during sleep
VFLASH2	Disabled
VANA	Enabled; Disabled in sleep mode
VIO	Enabled; Low Iq mode during sleep
VCORE	Enabled; Low Iq mode during sleep
VSIM	Controlled by register writing.
VR1A	Enabled; Disabled in sleep mode
VR1B	Disabled
VR2	Controlled by register writing; Enabled in sleep mode
VR3	Enabled; Disabled in sleep mode

Table 2: Regulator controls

VR4	Enabled; Disabled in sleep mode
VR5	Enabled; Disabled in sleep mode
VR6	Enabled; Disabled in sleep mode
VR7	Enabled; Disabled in sleep mode
IPA1-2	Disabled

Sleep mode

Sleep mode is entered when both MCU and DSP are in stand-by mode. Sleep is controlled by both processors. When SLEEPX low signal is detected UEM enters SLEEP mode. VCORE, VIO and VFLASH1 regulators are put into low quiescent current mode. All RF regulators, except VR2, are disabled in SLEEP. When SLEEPX=1 is detected UEM enters ACTIVE mode and all functions are activated.

The sleep mode is exited either by the expiration of a sleep clock counter in the UEM or by some external interrupt, generated by a charger connection, key press, headset connection etc.

In sleep mode the main oscillator (26MHz) is shut down and the 32 kHz sleep clock oscillator is used as reference clock for the baseband.

Charging

Charging can be performed in parallel with any other operating mode. A BSI resistor inside the battery pack indicates the battery type/size. The resistor value corresponds to a specific battery capacity and technology.

The battery voltage, temperature, size and current are measured by the UEM controlled by the charging software running in the UPP.

The charging control circuitry (CHACON) inside the UEM controls the charging current delivered from the charger to the battery. The battery voltage rise is limited by turning the UEM switch off when the battery voltage has reached VBATLim (programmable charging cut-off limits 3.6V / 5.0V / 5.25V). Charging current is monitored by measuring the voltage drop across a 220 mOhm resistor.

DC Characteristics

Supply Voltage Ranges

Table 3: Absolute Maximum Ratings

Signal	Rating	
Battery Voltage	0 4.39V (VBAT)	
Charger Input Voltage	-0.3 9.2VRMS (16,9 Vpeak)	

Following voltages are the normal and extreme voltages for the battery:

Signal	Min.	Nom	Max	Note
VBAT	3.21V	3.80V	4.39V	1
Vcoff+	3.0V	3.1	3.2	HW off to on
Vcoff-	2.7V	2.8V	2.9V	HW on to off
Vmstr+	2.0V	2.1V	2.2V	UEM off to on
Vmstr-	1.8V	1.9V	2.0V	UEM on to off
Sw shutdown	-	3.1V	-	In Call
Sw shutdown	-	3.2V	-	In Idle

Table 4: Battery voltage range

¹ According to the GSM specifications, a GSM-device must work correctly if it is powered by his nominal voltage +/-15%. The UEM hardware shut down is from 3.10V and below. The Energy Managment of the phone is shutting down the phone at 3.20V in order to perform a correct shutdown of the phone. Above 3.20V + tolerances, at 3.21V, the phone is still fullfilling all the GSM requirements. The Nominal voltage is therefore set at 3.80V. During fast charging of an empty battery voltages between 4.20 and 4.60 might appear for a short while.

CCS Technical Documentation

Regulators' Voltage Ranges

Signal	Min.	Nom	Мах
VANA	2.70V	2.78V	2.86V
VFLASH1	2.70V	2.78V	2.86V
VFLASH2	2.70V	2.78V	2.86V
VSIM	1.745V 2.91V	1.8V 3.0V	1.855V 3.09V
VIO	1.72V	1.8V	1.88V
VCORE	1.000V 1.140V 1.235V 1.425V 1.710V	1.053V 1.2V 1.3V 1.5V 1.8V	1.106V 1.260V 1.365V 1.575V 1.890V

Table 5: BB regulators

Signal	Min.	Nom	Max	
VR1A	4.6V	4.75V	4.9V	
VR1B	4.6V	4.75V	4.9V	
VR2 V _{out_on} V _{out_sleep}	2.70V 2.61V	2.78V	2.86V 2.95V	
VR3	2.70V	2.78V	2.86V	
VR4	2.70V	2.78V	2.86V	
VR5	2.70V	2.78V	2.86V	
VR6	2.70V	2.78V	2.86V	
VR7	2.70V	2.78V	2.86V	

Table 6: RF regulators

Interconnection Diagram

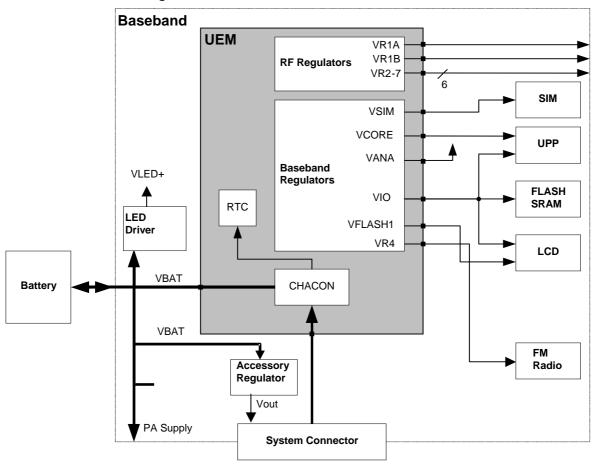


Figure 2: Power distribution diagram

External Signals and Connections

System connector (X102)

Pin	Signal	Min.	Nom	Max	Condition	Note
2	VCHAR	-	11.1V _{peak}	16.9 V _{peak} 7.9 V _{RMS} 1.0 A _{peak}	Standard charger (ACP-7)	Charger positive input
		7.0 V _{RMS}	8.4 V _{RMS}	9.2 V _{RMS} 850 mA	Fast charger	
1	CHGND	-	0	-		Charger ground

Table 7: DC connector

CCS Technical Documentation

Signal	Min.	Nom	Max	Condition	Note
MIC2P (Differential input P)	-	-	100mV _{pp}	G=20dB	1,22kΩ to MIC1B (AC condition)
MIC2N (Differential input N)	-	-	100mV _{pp}	G=20dB	1k Ω to GND
MICB2 (Microphone Bias)	2.0 V	2.1 V	2.25 V	DC	Unloaded
External loading of MICB2	-	-	600uA	DC	

Table 8: External microphone

Signal	Min.	Nom	Max	Units	Note
Output voltage swing* * seen from transducer side	2.0	-	-	Vpp	Differential output, with 60 dB signal to total distortion ratio
Common voltage level for HF output (HF & HFCM) VCMHF	0.75	0.8	0.85	V	
Load Resistance (HF to HFCM)	154	194	234	W	2×22Ω (±5%) + 150Ω (±25%)
Load Capacitance (HF to HFCM)	-	-	10	NF	Load to GND

Table 9: External speaker, differential output XEARP (HF) & XEARN (HFCM)

Signal	Min.	Nom	Max	Condition	Note
HookInt	OV	-	2.86V (Vflash1)		Headset button call control, connected to UEM AD-converter
HeadInt	OV	-	2.86V (V flash1)		Accessory detection, connected to UEM AD-converter

Table 10: Headset detection

Battery connector

Battery temperature is estimated by measurement in Transceiver PWB with a separate NTC resistor. Thus the Battery Interface has only 3 contacts.

Table 11: Battery connector

Name	Description	Test usage
VBAT	Battery voltage terminal.	Battery calibration.
GND	Battery ground terminal.	
BSI	Battery size identification.	Flash and local mode forcing.

Baseband - RF interface

The interface between the baseband and the RF can be divided into three categories:

- The digital interface from the UPP to the RF ASIC (Mjoelner). The serial digital interface is used to control the operation of the different blocks in the RF ASICs.
- The analogue interface between UEM and the RF. The analogue interface consists of RX and TX converter signals. The power amplifier control signal TXC and the AFC signal comes as well from the UEM.
- Reference clock interface between Mjoelner and UPP which supplies the 26Mhz system clock for the UPP.

Internal Signals and Connections

The tables below describe internal signals. The signal names can be found on the schematic for the PWB.

Audio

Signal	Min.	Nom	Max	Condition	Note
MIC1P (Differential input P)	-	5mV	-	G=0dB	$1k\Omega$ to MIC1B (RC filtered by 220R/4.7uF)
MIC1N (Differential input N)	-	5mV	-	G=0dB	1k Ω to GND
MICB1 (Microphone Bias)	2.0 V	2.1 V	2.25 V	DC	
External loading of MICB1	-	-	600uA	DC	

Table 12: Internal microphone

Signal	Min.	Nom	Max	Units	Note
Output voltage swing	4.0	-	-	Vpp	Differential output
Load Resistance (EARP to EARN)	26	32	-	W	
Load Capacitance (EARP to EARN)	-	-	50	NF	

Table 13: Internal speaker (Differential output EARP & EARN)

Baseband board clocks

Signal name	From	То	Min.	Тур.	Max.	Unit	Notes
RFCLK	MJOELNER	UPP	-	26	-	MHz	Active when SLEEPX is high
SLEEPCLK	UEM	UPP	-	32.768	-	KHz	Active when VBAT is sup- plied
RFCONVCLK	UPP	UEM		13	-	MHz	Active when RF converters are active
RFBUSCLK	UPP	MJOELNER	-	13	13	MHz	Only active when bus-ena- ble is active
DBUSCLK	UPP (DSP)	UEM	-	13	13	MHz	Only active when bus-ena- ble is active
CBUSCLK	UPP (MCU)	UEM	-	1	1.2	MHz	Only active when bus-ena- ble is active
LCDCAMCLK	UPP (Write) (Read)	LCD	0.3	3.25 0.650	4	MHz	Only active when bus-ena- ble is active

Table 14: Board Clocks

Functional Description

Audio External

NOKIA

Nokia 1100 is designed to support fully differential external audio accessory connection. A headset and PnPHF can be directly connected to system connector.

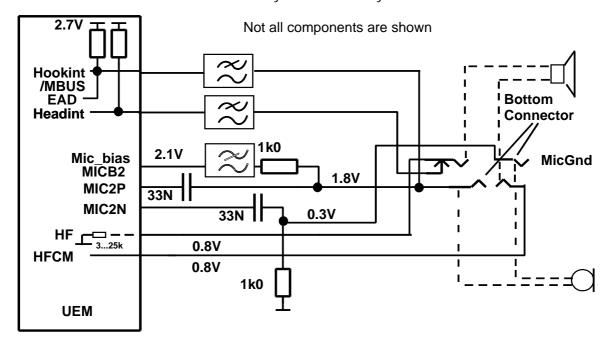


Figure 3: Headset Interface

Headset accessory uses 4-wire fully differential audio connection.

Audio Internal

Earpiece

The earpiece selected is a 13-mm dynamic earpiece with a nominal impedance of 32 Ω (.

The earpiece is placed within the mechanic parts, e.g. C-cover and Light guide. The holes of the A-cover and the choice of dust shield are made in a way to have the best transmission of the sound, without having much impact on the sound waves and sound qualities.

The acoustic design involves a sandwich of five parts: Earmat, A-cover, C-cover, light-guide- and D-cover.

On top of the lightguide there will be a metal frame (C-cover) that protects the earpiece. The C-cover includes 5 acoustical holes and a double-sided gasket for sealing in the area over the earpiece.

The front cover consists of two parts, an A-cover and an earmat with six acoustical holes, 2 direct front holes, and 4 leak holes.

Two dust shields will be used: one in the gap between earmat and A-cover and one on the C-cover.

The earpiece circuit includes only a few components:

two 10 ohm in order to have a stable output

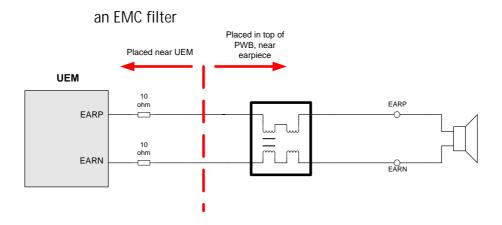


Figure 4: Earpiece interface

Microphone

An omni directional microphone is used. The microphone is placed in the system connector sealed in its rubber gasket. The sound port is provided in the system connector.

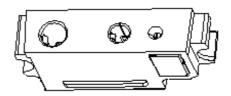


Figure 5: Bottom connector including the microphone

The microphone connection comprises a differential bias circuit, driven directly from the MICB1 bias output with external RC-filters.

The RC filter (220 Ω , 4.7 μ F) is scaled to provide damping at 217 Hz.

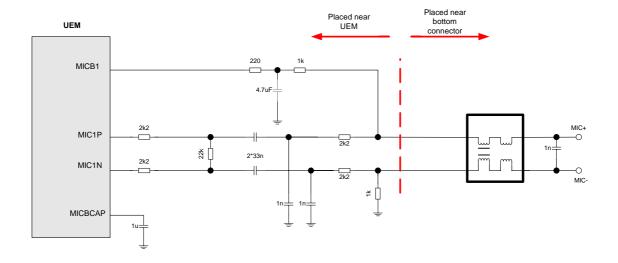


Figure 6: Internal electrical microphone interface

Buzzer

The ringing tones are generated by a buzzer, which gives monophonic ringing tones. **Figure below** shows the electrical interface of the buzzer.

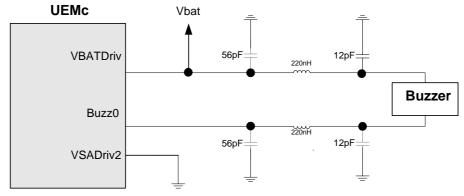


Figure 7: Electrical interface of buzzer

Flashlight

The flashlight feature can be used to light up for example a keyhole.

Flashlight nominal current	Temperature	Note
20mA	25°C	See Figure 8
6mA	85°C	See Figure 8

Table 15: Flashlight LED currents

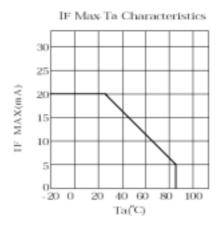


Figure 8: Flashlight nominal currents

Batteries

Type: BL-5C battery

Technology:Li-Ion. 4.23V charging. 3.1V cut-off

Capacity:850 mA/h

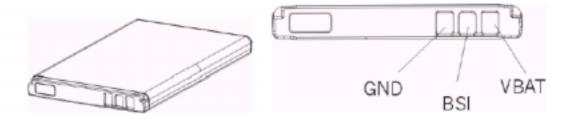


Figure 9: BL-5C Battery

The BSI values:

Mode	BSI (kOhm)			Description
	Min.	Туре	Max	
Normal		75		Used for calculating the Capacity (BL5-C = 850mA)
Service	3.2	3.3	3.4	Pull-down resistor in battery. Used for fast power-up in production (LOCAL mode), R/D purposes or in after sales, 1% tolerance resistors shall be used.

Table 16: BSI levels BL-5C Battery

The battery includes an over-temperature and an over-voltage protection circuit.

Keyboard

The keyboard PWB layout consists of a grounded outer ring and an inner pad.

Power key is integrated in keypad. For the schematic diagram of the keyboard kindly refer to the A3 schematic diagrams.

Table 17: Keyboard configuration

UPP Pin	Pad symbol	In/ Out	Internal Pull Up/down	Interrupt	
GenIO1	0	In	Up	GenIOInt5	Falling edge interrupt
GenIO2/P05	7	In	Up	P0 int	Falling edge interrupt
GenIO20	#	In	Up	GenIOInt2	Falling edge interrupt
GenIO21	*	In	Up	GenIOInt3	Falling edge interrupt
GenIO25	Up	In	Up	GenIOInt4	Falling edge interrupt
GenIO27	1	In	Up	GenIOInt6	Falling edge interrupt
P00	Menu/(End)	In	Up	P0 int	Falling edge interrupt
P01	3	In	Up	P0 int	Falling edge interrupt
P02	9	In	Up	P0 int	Falling edge interrupt
P03	8	In	Up	P0 int	Falling edge interrupt
P04	Down	In	Up	P0 int	Falling edge interrupt
P10	6	In	Up	P1 int	Falling edge interrupt
P11	4	In	Up	P1 int	Falling edge interrupt
P13	5	In	Up	P1 int	Falling edge interrupt
P14	C/(Send)	In	Up	P1 int	Falling edge interrupt
P15	2	In	Up	P1 int	Falling edge interrupt

All lines are configured as input, when there is no key pressed.

When a key is pressed, the specific line where the key is placed is pulled low. This generates an interrupt to the MCU and the MCU now starts its scanning procedure.

When the key has been detected all the keypad-register inside the UPP is reset and it's ready receiving new interrupt.

CCS Technical Documentation

Display & Keyboard Backlight

LCD Backlight (RH-18 only)

LCD Backlight consists of 2 sidefirering super yellow-green dual pack LED's which are placed on the display FPC besides the LCD area. They lit into the light guide where the light is distributed to generate sufficient backlight for the LCD & keyboard area.

Keyboard light

There is no dedicated keyboard light implemented. Keyboard light is provided by the LCD backlight.

Display

The LCD is a black and white 96x65 full dot matrix display. The LCD has a standard DCT4 interface. The LCD cell is part of the complete LCD module, which includes C-cover, gasket, light guide, spring connector, transflector, LEDs and earpiece. The following figure illustrates the complete overview of the LCD module.

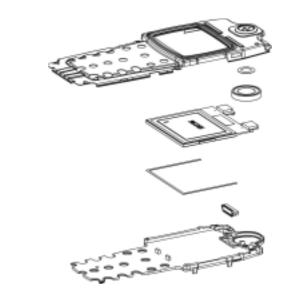


Figure 10: LCD module exploded diagram

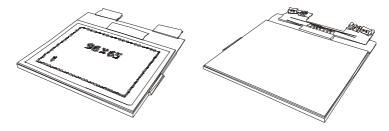


Figure 11: LCD module

Memory Module

The baseband memory module consists of external burst flash memory 2Mbyte (16Mbit) (optional: 4Mbyte (32Mbit) or 8MByte (64Mbit)). The UPP contains internal SRAM with 2 Mbit (optional: 4Mbit or 8Mbit). The UPP will not be covered here.

SIM Interface

The whole SIM interface is located in the two ASICs, UPP and UEM.

The SIM interface in the UEM contains power up/down, port gating, card detect, data receiving, ATR-counter, registers and level shifting buffers logic. The SIM interface is the electrical interface between the Subscriber Identity Module Card (SIM Card) and mobile phone (via UEM device).

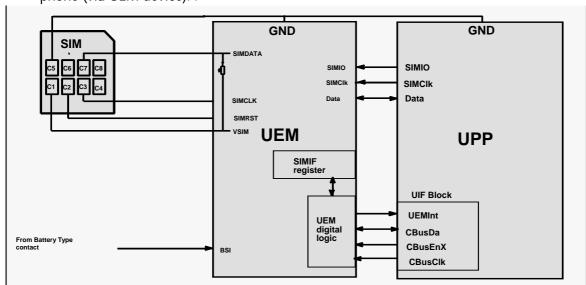


Figure 12: SIM interface

Vibra

The vibra is placed in the bottom of the phone.

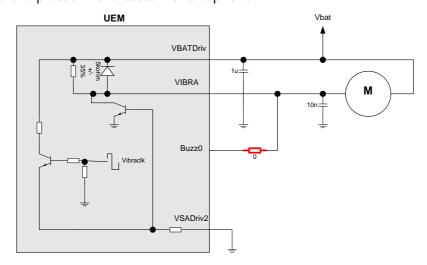


Figure 13: Vibra driver circuit

Test Interfaces

The test pattern is placed on engine PWB, for service and production purposes, same test pattern is used for after sales purposes as well.

Through MBUS or FBUS connections, the phone HW can be tested by PC software (Phoenix) and production equipment (FLALI/FINUI/LABEL).

The test points are listed in the schematic diagrams

Connections to Baseband

The flash programming box, FPS8, is connected to the baseband using a galvanic connector or test pads for galvanic connection.

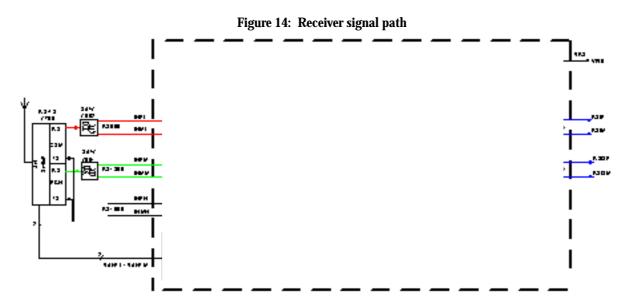
The flash programming interface connects the flash prommer to the UPP via the UEM and the connections correspond to a logic level of 2.7 V. The flash prommer is connected to the UEM via the MBUS (bi-directional line), FBUS_TX, and FBUS_RX. The programming interface connections between the UEM and the UPP constitute the MBUS_TX, MBUS_RX, FBUS_TX, and FBUS_RX lines. The interface also uses the BSI (Battery_Size_Indicator).

FBUS Interface

FBUS is an asynchronous data bus having separate TX and RX signals. Default bit rate of the bus is 115.2 kbit/s. FBUS is mainly used for controlling phone when flashing.

MBUS Interface

MBUS interface is used for controlling the phone in service. It is bi-directional serial bus between the phone and PC. The default transmission speed is 9.6 kbit/s.


General description of the RF circuits

In the following general descriptions different colours are used in the block diagram. The GSM 850 signal route is shown in red, the GSM1900 route in green and the common signal lines are shown in blue. Signal lines which is common for both

Receiver signal path

NOKIA

The signal from the antenna pad is routed to the RX/TX switch (Z700). If no control voltage is present at VANT2 and VANT1 the switch works as a diplexer and the GSM850 signal is passed through the RX/TX switch to GSM-RX and the GSM1900 signal is passed to DCS-RX.

From the RX/TX switch the GSM850 signal is routed to the SAW filter (Z602). The purpose of the SAW filter is to provide out-of band blocking immunity and to provide the LNA in Mjoelner (N600) with a balanced signal. The front end of Mjoelner is divided into a LNA and Pre-Gain amplifier before the mixers.

The output from the mixer is feed to Baseband part of Mjoelner where the signals amplified in the BBAMP and low pass filtered in LPF1 before the DC compensation circuits in DCN1. The DCN1 output is followed by a controlled attenuator and a second lowpass filter LPF2. The output from LPF2 is DC centered in DCN2 before being feed to the BB for demodulation.

The GSM1900 signal chain is similar to GSM850, the SAW filter numbered Z601.

Transmitter signal path

The I/Q signal from the BB is routed to the modulators for both 850 and 1900 MHz. The output of the modulators is either terminated in a SAW filter (Z603) for GSM 850 or a balun for GSM1900. Both signals are amplified in buffers.

The amplitude limited signal is then amplified in the PA (N700) where the gain control takes place. The TX signal from the couplers is fed to the RX/TX switch, used to select which signal to route to the antenna.

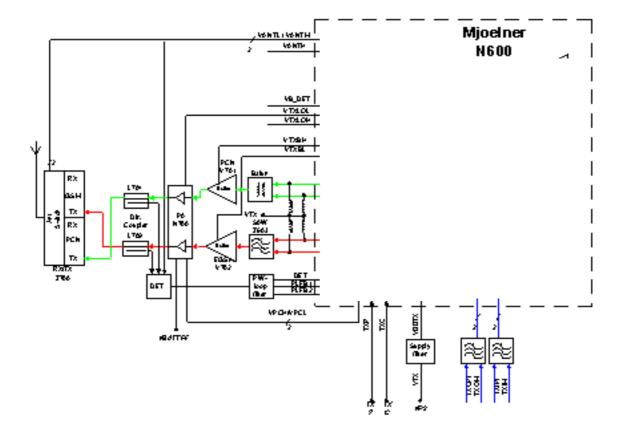


Figure 15: Transmitter signal path

PLL

The PLL supplies Local Oscillator (LO) signals for the RX and TX-mixers. In order to be able to generate LO-frequencies for the required EGSM and PCN channels a regular synthesizer-circuit is used. All blocks for the PLL except for the VCO, reference X-tal and loop filter is located in the Mjoelner IC.

The reference frequency is generated by a 26MHz Voltage Controlled X-tal Oscillator (VCXO) which is located in the Mjoelner IC. Only the X-tal is external. 26MHz is supplied to BB where a divide-by-2 circuit (located in the UPP IC) generates the BB-clock at 13MHz. The reference frequency is supplied to the reference divider (RDIV) where the frequency is divided by 65. The output of RDIV (400kHz) is used as reference clock for the Phase Detector (φ) .

The PLL is a feedback control system controlling the phase and frequency of the LO-sig-

nal. Building blocks for the PLL include: Phase detector, Charge Pump, Voltage Controlled Oscillator (VCO), N-Divider and loop filter. As mentioned earlier only the VCO and loop filter is external to the Mjoelner IC.

The VCO (G600) is the component that actually generates the LO-frequency. Based on the control voltage input the VCO generates a single-ended RF output. The signal is then differentiated through a balun. This signal is fed to the Prescaler and N-divider in Mjoelner, these 2 blocks will together divide the frequency by a ratio based on the selected channel.

The divider output is supplied to the phase detector which compares the frequency and phase to the 400kHz reference clock. Based on this comparison the phase detector controls the charge pump to either charge or discharge the capacitors in the loop filter. By charging/discharging the loop filter the control voltage to the VCO changes and the LO-frequency will change. Therefore the PLL keeps the LO-frequency locked to the 26MHz VCXO frequency.

The loop filter consists of the following components: C639-C641 and R618-R619.

The PLL is operating at twice the channel center frequency when transmitting or receiving in the PCN band. For the EGSM band the PLL is operating at 4-times the channel frequency. Therefore divide-by-2 and divide-by-4 circuits are inserted between the PLL output and LO-inputs to the PCN and EGSM mixers.

Table 18: Frequency plan

Item	GSM 850 values	GSM 1900 values
Receiver frequency range	869894 MHz	19301990 MHz
Transmit frequency range	824849 MHz	18501910 MHz
Duplex spacing	45 MHz	
Channel spacing	200 KHz	200 KHz
Number of RF channels	174	374
Power class	4 (2 W peak)	1 (1 W peak)
Number of power levels	15	16

Power Supply

Engine module

All power supplies for the RF Unit are generated in the UEM IC (D200). All power outputs from this IC has a decoupling capacitor at which the supply voltage can be checked.

The power supply configuration is described in the block diagram below:

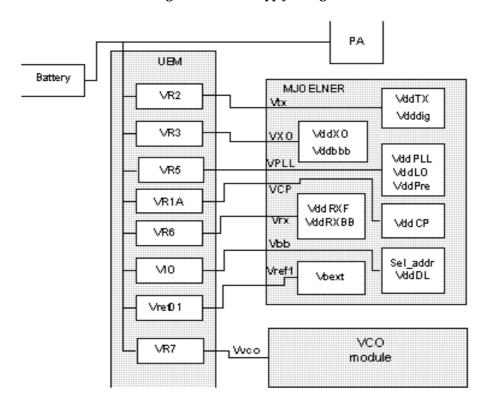


Figure 16: Power supply configuration

The names in **bold** are signal names used on the RF schematic pages. Names in the boxes within the Mjoelner and the VCO refers to pin names on the respective ICs (N600, G600).

Table 19: Power supply signals

Supply name RF	Supply name UEM	Min	Тур	Max	Unit
VTX	VR2	2.64	2.78	2.86	V
VXO	VR3	2.64	2.78	2.86	V
VCP	VR1A		4.75		V
VPLL	VR5	2.64	2.78	2.86	V
VRX	VR6	2.64	2.78	2.86	V
VVCO	VR7	2.64	2.78	2.86	V
VBB	VIO	1.72	1.8	1.88	V
VREF2	VrefRF01	1.334	1.35	1.366	V
VBATT	BATTERY	3.1	3.6	5.2	V